Config File

The config.json file contains the parameters used in the simulation.

Warning

Users should NOT edit this file, with the exception of the simulation section. All the other parameters have been computed from fitting statistical models or from other papers.

{
    "simulation": {
        "min_year": 2024,
        "time_horizon": 2,
        "province": "BC",
        "population_growth_type": "LG",
        "num_births_initial": 100,
        "max_age": 111
    },
    "antibiotic_exposure": {
        "parameters": {
            "β0": 110.000442,
            "βyear": -0.055100,
            "β2005": 55.033675,
            "βsex": 0.249033,
            "θ": 727.383,
            "β2005_year": -0.027437,
            "fixyear": null,
            "βfloor": 0.05
        }
    },
    "census_table": {
        "year": 2021
    },
    "control": {
        "hyperparameters": {
            "β0_μ": 0.0,
            "β0_σ": 1.678728
        },
        "parameters": {
            "βage": 3.5430381,
            "βage2": -3.4980710,
            "βsexage": -0.8161495,
            "βsexage2": -1.1654264,
            "βsex": 0.2347807,
            "θ": [-0.3950, 2.754]
        }
    },
    "cost": {
        "parameters": {
            "control": [2372, 2965, 3127],
            "exac": [130, 594, 2425, 9900]
        },
        "exchange_rate_usd_cad": 1.66
    },
    "death": {
        "parameters": {}
    },
    "exacerbation": {
        "hyperparameters": {
            "β0_μ": 0.0,
            "β0_σ": 0.0000001
        },
        "parameters": {
            "βcontrol_C": -1.6712824655642424,
            "βcontrol_PC": -0.978135285004297,
            "βcontrol_UC": -0.5726701768961326
        },
        "initial_rate": 0.347
    },
    "exacerbation_severity": {
        "hyperparameters": {
            "α": [0.495, 0.195, 0.283, 0.026],
            "k": 100
        },
        "parameters": {
            "p": [0.25, 0.25, 0.25, 0.25],
            "βprev_hosp_ped": 1.79,
            "βprev_hosp_adult": 2.88
        }
    },
    "family_history": {
        "parameters": {
        "p": 0.2927242
        }
    },
    "incidence": {
        "hyperparameters": {
            "β0_μ": 0,
            "β0_σ": 0.00000001
        },
        "parameters": {
            "β0": 34.63398846,
            "βsex": -9.52017810,
            "βage": [-6.64423331, 7.73720625, -5.63121394, 3.90920803, -1.39497027],
            "βyear": -0.01967344,
            "βsexage": [-4.45607619, 4.70483885, -2.61760564, 0.79555703, 0.95476291],
            "βsexyear": 0.00461397,
            "βfam_hist": [0.12221763272424911, 0.3619942],
            "βabx_exp": [1.826, -0.2920745, 0.053]
        },
        "max_age": 63
    },
    "pollution": {
        "SSP": "SSP1_2.6"
    },
    "prevalence": {
        "hyperparameters": {
            "β0_μ": 0,
            "β0_σ": 0.00000001
        },
        "parameters": {
            "β0": -2.28093577,
            "βsex": -0.10755806,
            "βage": [
                1.79932480805632, -2.17989374225804, 3.64152189395539,
                -2.91796538427475, 1.43423653685647
            ],
            "βyear": [2.83586405, -1.18097542],
            "βsexage": [
                -7.69209530818354, 2.68306716462003, 0.865308192929771,
                -0.656000992252807, -0.0270826201453694
            ],
            "βsexyear": [1.29279956487906, 0.036861276364171],
            "βyearage": [
                50.610032709273, 6.51236955045884, -39.4569160874519,
                3.69176099747937, 15.9637932343298, -4.79271775804693,
                -7.14281869955998, 4.18656498490802, -4.88274672641455, -3.3603262281752
            ],
            "βsexyearage": [
                -3.19896302105009, 7.24422362459046, -25.7979736592919, 0.253623898303176,
                11.3848773603672, -2.57625491419054, 7.61284030050534, 4.17111534541718,
                -15.2128066205219, 3.70514542334455
            ],
            "βfam_hist": [0.12221763272424911, 0.37662555231482536],
            "βabx_exp": [1.826, -0.225, 0.053]
            },
            "max_age": 63
    },
    "utility": {
        "parameters": {
            "βcontrol": [0.06, 0.09, 0.10],
            "βexac_sev_hist": [
                0.006153846153846154, 0.016923076923076923,
                0.019230769230769232, 0.02153846153846154
            ]
        }
    }
}

Module

Parameter

Description

Source

Documentation

Antibiotic Exposure

β0

Intercept for antibiotic exposure model

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

βyear

Effect of year on antibiotic exposure model

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

β2005

Effect of year 2005 on antibiotic exposure model

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

βsex

Effect of sex

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

θ

Overdispersion parameter for antibiotic exposure model

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

β2005_year

Interaction effect of year and year 2005 on antibiotic exposure model

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

fixyear

Fixed year for antibiotic exposure model (if null, no fixed year)

Fitted using a GLM

Antibiotic Exposure Model

Antibiotic Exposure

βfloor

Floor for antibiotic exposure probability

Fitted using a GLM

Antibiotic Exposure Model

Control

β0_μ

Mean of the intercept for asthma control model

Fitted using an ordinal regression model

control-params

Control

β0_σ

Standard deviation of the intercept for asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Control

βage

\(\beta\) coefficient for the \(\text{age}\) term of the asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Control

βage2

\(\beta\) coefficient for the \(\text{age}^2\) term of the asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Control

βsexage

\(\beta\) coefficient for the \(\text{sex}*\text{age}\) term of the asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Control

βsexage2

\(\beta\) coefficient for the \(\text{sex}*\text{age}^2\) term of the asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Control

βsex

\(\beta\) coefficient for the \(\text{sex}\) term of the asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Control

θ

Thresholds for the asthma control model

Fitted using an ordinal regression model

Asthma Control Model

Cost

control

Direct cost of asthma due to asthma control levels (1 = well-controlled, 2 = partially-controlled, 3 = uncontrolled) in USD

[Yaghoubi, 2020]

Cost Due to Asthma Control Levels

Cost

exac

Direct cost of asthma due to asthma exacerbation severity levels (1 = mild, 2 = moderate, 3 = severe, 4 = very severe) in USD

[Yaghoubi, 2020]

Cost Due to Asthma Exacerbations

Exacerbation

β0_μ

Mean of the intercept for asthma exacerbation model

Fitted using a Poisson regression model

Asthma Exacerbations Model

Exacerbation

β0_σ

Standard deviation of the intercept for asthma exacerbation model

Fitted using a Poisson regression model

Asthma Exacerbations Model

Exacerbation

βcontrol_C

\(\beta\) coefficient for the \(\text{asthma control level = well-controlled}\) term of the asthma exacerbation model

Economic Burden of Asthma (EBA) study

Asthma Exacerbations Model

Exacerbation

βcontrol_PC

\(\beta\) coefficient for the \(\text{asthma control level = partially-controlled}\) term of the asthma exacerbation model

Economic Burden of Asthma (EBA) study

Asthma Exacerbations Model

Exacerbation

βcontrol_UC

\(\beta\) coefficient for the \(\text{asthma control level = uncontrolled}\) term of the asthma exacerbation model

Economic Burden of Asthma (EBA) study

Asthma Exacerbations Model

Exacerbation

initial_rate

Initial asthma exacerbation rate for newly incident asthma cases

Fitted using a Poisson regression model

Asthma Exacerbations Model

Exacerbation Severity

α

Dirichlet prior parameters for asthma exacerbation severity model

Fitted using a Bayesian model

exacerbation_severity_model

Exacerbation Severity

k

Concentration parameter for asthma exacerbation severity model

Fitted using a Bayesian model

exacerbation_severity_model

Exacerbation Severity

p

Probability of asthma exacerbation severity levels (1 = mild, 2 = moderate, 3 = severe, 4 = very severe)

Fitted using a Bayesian model

exacerbation_severity_model

Exacerbation Severity

βprev_hosp_ped

Effect of previous pediatric hospitalization on asthma exacerbation severity

Fitted using a Bayesian model

exacerbation_severity_model

Exacerbation Severity

βprev_hosp_adult

Effect of previous adult hospitalization on asthma exacerbation severity

Fitted using a Bayesian model

exacerbation_severity_model

Family History

p

Probability of having a family history of asthma

Fitted using the CHMS data

family-history-model

Incidence

β0_μ

Mean of the intercept for asthma incidence model

Fitted using a logistic regression model

incidence-model

Utility

βcontrol

Disutility due to asthma control levels (1 = well-controlled, 2 = partially-controlled, 3 = uncontrolled)

[Yaghoubi, 2020]

Disutility Due to Asthma Control Levels

Utility

βexac_sev_hist

Disutility due to asthma exacerbation severity levels (1 = mild, 2 = moderate, 3 = severe, 4 = very severe)

[Einarson, 2015]

Disutility Due to Asthma Exacerbations