Utility Data¶
To run the data processing for the utility data:
cd LEAP
python3 leap/data_generation/utility_data.py
leap.data_generation.utility_data module¶
-
leap.data_generation.utility_data.load_eq5d_data(max_age: int =
111
) pandas.core.frame.DataFrame [source]¶ Load EQ-5D data from the original Excel file and process it into a DataFrame.
The original data file is formatted as follows:
Variable Total
(N = 1207)p value* Female
(N = 662)Male
(N = 545)All eq5d (sd) eq5d (sd) eq5d (sd) Age group 18–24 eq5d (sd) eq5d (sd) eq5d (sd) 25–34 eq5d (sd) eq5d (sd) eq5d (sd) 35–44 eq5d (sd) eq5d (sd) eq5d (sd) 45–54 eq5d (sd) eq5d (sd) eq5d (sd) 55–64 eq5d (sd) eq5d (sd) eq5d (sd) 65–74 eq5d (sd) eq5d (sd) eq5d (sd) 75 + eq5d (sd) < 0.01 eq5d (sd) eq5d (sd) Education ... ... ... ... ... - Parameters:¶
- max_age : int¶
The maximum age to consider in the data.
- Returns:¶
A DataFrame containing EQ-5D utility values by age and sex. Columns:
age (int)
: Age of the individual.sex (str)
: One of"F"
= female or"M"
= male.eq5d (float)
: EQ-5D utility value.sd (float)
: Standard deviation of the EQ-5D utility value.
-
leap.data_generation.utility_data.interpolate_eq5d(age: int, eq5d_upper: float, age_upper: int =
18
) float [source]¶ Interpolate EQ-5D value for ages below 18 based on the EQ-5D value at 18.
- leap.data_generation.utility_data.interpolate_eq5d_data(df_utility: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Interpolate EQ-5D data to fill in missing ages below 18.
The EQ-5D data was only available for ages 18 and above, so this function generates EQ-5D values for ages 0 to 17 by interpolating from the values at age 18.
- Parameters:¶
- df_utility: pandas.core.frame.DataFrame¶
DataFrame containing EQ-5D data for ages 18 and above:
age (int)
: Age of the individual.sex (str)
: One of"F"
= female or"M"
= male.eq5d (float)
: EQ-5D utility value.sd (float)
: Standard deviation of the EQ-5D utility value.
- Returns:¶
A dataframe containing EQ-5D data for ages 0 to 17, interpolated from the values at age 18. Columns:
age (int)
: Age of the individual, now including ages 0 to 17.sex (str)
: One of"F"
= female,"M"
= male.eq5d (float)
: Interpolated EQ-5D utility value for ages 0 to 17.sd (float)
: Since the data was interpolated, the standard deviation is set to 0 for these ages.